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Fitness et statut délmoglraqp]hliqmre ’r

Estimation de la fitness
ou du statut démographique

dans les populations animales

n objectif majeur en biologie évolutive ainsi qu’en gestion de la vie sauvage est de
prédire le statut futur des populations. Le taux de multiplication A (ou son
équivalent, le taux intrinséque d’accroissement r) exprime, pour un groupe
homogene d’individus, I’équilibre dynamique entre sa capacité de croissance dans un
environnement donné et les facteurs limitants du milieu. Calculés pour un groupe homogéne
d’animaux ou de plantes partageant le méme phénotype, ces taux estiment leur fitness (Fisher

1930, Charlesworth 1980, Caswell 1989).

Bien que I’on puisse présenter les modéles démographiques sous différentes formes, le taux
d’accroissement asymptotique et le taux de multiplication, s’obtiennent respectivement comme
la premiére racine de I’équation d’Euler-Lotka (Euler 1760, Lotka 1924) ou comme la

premiére valeur propre de la matrice de Leslie (1945, 1948).
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Ces équations n’ont pas de solution explicite, sauf dans des cas particuliers. Des modeles
ad hoc ont donc proliféré bien que les résultats qu’ils permettent d’obtenir soient en général
biaisés, voire erronés (Danchin 1992). Cependant, on les utilise largement dans les études de
dynamique de populations sauvages (exemples dans Clutton—Brock éd. 1988). En outre, le
modéele démographique original, les hypothéses sous-jacentes et les divers résultats sont

oubliés ou méconnus.

Le présent Chapitre contient un article (Danchin, Gonzélez—Davila & Lebreton, a apparaitre
dans Journal of Avian Biology) présentant la critique du modéle ad hoc utilisé souvent par les
ornithologues pour obtenir un estimateur de A (e.g. Harris 1983, Newton 1989, Vermeer &
Devito 1989, Brooke 1990). La mise en page de la version ici présentée différira de la version
publiée ainsi qu’en quelques corrections de I’anglais, quelques précisions des formulations
mathématiques et que 1’on a discuté (parmi les autres résultats démographiques d’intérét pour
la gestion de populations) les concepts de valeur reproductive et de convergence. Bien que les
concepts des modeles démographiques aient été présentés dans le Chapitre 1 (dans le cadre de
la démographie strictu senso), ici, I'intérét est centré sur leur application en biologie animale et
gestion de populations sauvages. Il est vrai, qu’une partie de la argumentation pourrait s’avoir
épargnée si le Chapitre 2 avait été rédigé comme un chapitre et non comme la base d’un article,
mais I'intérét d’une présentation a part entiére avec I’orientation précisée ci-dessus nous

semble nécessaire.

Les objectifs sont donc, d’abord rétablir les bases des modéles démographiques indépendants
de la densité, puis rappeler les statistiques que 1’on peut obtenir explicitement et celles qui
requierent un calcul plus sophistiqué, et ensuite présenter les sorties d’intérét général pour les
biologistes de populations. Un graphique illustre ’ordre de grandeur du biais des estimations
issues du modele ad hoc. Enfin, nous montrons que les modéles démographiques permettent

d’établir un lien entre les approches empiriques et théoriques 7
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Estimating bird fitness correctly

by using demographic models
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ABSTRACT

One aim of studies in evolutionary biology is to estimate the fitness of a phenotype within a
population. One of the most natural estimates of fitness is A, the multiplication rate, or finite
rate of increase, which results from the demographic parameters of that particular phenotype.
Even though ad hoc computations of A may be strongly biased, they are still widely used, in
particular in bird population biology. We compare ad hoc computation of the multiplication
rate and exact ones using demographic models. The magnitude of the discrepancy increases
sharply with the departure of A from unity. This may alter our perception of population

functioning. Other outputs of demographic models, which play a prominent role in bird
evolutionary biology and population management, are briefly discussed. As a whole,

demographic models provide a link between empirical and theoretical approaches.
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INTRODUCTION

A main objective in evolutionary biology and in wild population management is to forecast the
future status of populations. The growth rate, or equivalently, the multiplication rate,
expresses, for a phenotype, the dynamic balance between limiting factors and growth capacity
in a given environment. Calculated for a group of animals or plants sharing the same
phenotype, it measures their fitness (e.g. Charlesworth 1980, Caswell 1989, Charnov 1990,
Murray 1992). Its calculation, from estimates of demographic parameters obtained in the field

or in the laboratory, is thus a standard approach to evolutionary biology.

The exponential growth capacity of populations, first expressed by Euler in 1760 (republished
1970) is a well known result: if the demographic parameters are constant over time and depend
only on age, the growth of the population is asymptotically exponential. Although
demographic models may be presented in a number of slightly different forms, the asymptotic
growth or multiplication rates of the population are obtainable as the first root of a compact
equation, called the Euler—Lotka equation (Euler 1760, Lotka 1925), or as the first eigenvalue
of the Leslie (1945, 1948) matrix.

In fact, except in some rare exceptions, there is no way of obtaining explicitly the
multiplication rate and ad hoc formulas are in general wrong (Danchin 1992). However, they
are still widely used, particularly in bird population studies (e.g. Harris 1983, Vermeer &
Devito 1989, Brooke 1990, several examples in Clutton—Brock 1988 and in Newton 1989).
Moreover, the underlying original model, its assumptions and its various outputs, tend to be

forgotten.

The purposes of this paper are: first, to restate briefly the background of density independent
demographic models, second, to delimit which statistics can be obtained explicitly and which
ones require more sophisticated computation, and third, to give outputs of demographic
models of general interest to population biologists, bird population biologists in particular. The
magnitude of the bias that can be caused by erroneous computations is illustrated in some real
and some hypothetical data sets. Finally, a series of references where to find complementary

information is given.
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DEMOGRAPHIC BACKGROUND

The basic demographic parameters to consider for a population with seasonal reproduction as

birds may be noted (Lebreton & Clobert 1991):

m; = number of newborn females produced per female aged 7 per year;
S; = annual survival rate of an individual from age i to age i + 1.

o = age at firs reproduction in the population;

w = age of stabilization of parameters, or maximum age;

In practice, particularly when dealing with bird (and other vertebrates) populations, it is
convenient to decompose m; as the product of a; (the age—specific probability of breeding) and
fi (the age—specific fecundity of breeders, i.e. the number of newborn females produced per

breeding female aged 7). Then m; = a;f; (Lebreton et al. 1990).

The parameters of fecundity (f;, & and p;) can be estimated by monitoring marked populations

in the wild, and parameters of survival (s;) can be estimated by using capture-mark—recapture
models on individually marked animals in the field (Pollock ez al. 1990, Lebreton et al. 1992).
This paper deals with another topic: once these demographic parameters are estimated, how to

compute their balance for a group of individuals sharing the same phenotype?

The changes in numbers of individuals over the years can be modeled following two equivalent

approaches: the renewal (Lotka) approach and the matrix (Leslie) approach.

In the renewal equation approach, the number of births B(?) at time 7 is obtained by considering

one age over several time steps:

B(t)= Y, B(t—i)sy 5,855, m;

=

where B(f—1i)sy ) 8y+++5;_; is the number of individuals aged i alive at time z. If population

growth is exponential, B(f)= A B(t—i). Hence, the above equation reduces to the Lotka
equation (Lotka 1956 p 18):
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1=) A'sy s, 8,005, m, (2.1)

i=q
noted for short y(A4) = 1. In general, this equation has no explicit solution.

However, the changes in numbers can also be expressed by considering several age classes

over one time step, as a system of linear equations:

Ni(@®)= iso m; N;(t-1)

Ny(t)=s Ni(z-1)
: (2.2)

N;(®)=s5; N1 (t-1)

Na)(’)=sa)—1 Nw—l(t_1)+sa) Nw(t_l)

where N(?) is the number of individuals aged 7 at time 7. N, is the number of individuals aged

 or more. Hence N;(¢) = sy B(t—1).
These linear equations reduce to the matrix expression:
N(r)=LN(z-1) (2.3)

which leads to N(#) =L/ N(t—i). L is the well known «Leslie matrix» when S, =0 (Leslie
1945; see appendix A).

Under mild conditions, in the long run, the proportions of age classes in N(7) tend to stabilize
to a stable age—structure N, such that AN, = Ln,. The asymptotic multiplication rate A of the

population (Anderson 1975) can be obtained as the largest positive root of (Cull &
Vogt 1973):

det(L — A1) = ¢(4) = 0 (2.4)
Because of ®(4) = (-1)” A" (y(4)-1), y(4)=1 and ¢(4)=0 yield the same A.

Thus, the Lotka equation and the Leslie matrix are strictly equivalent formulations of the stable
population theory (Keyfitz 1968 ch VIII), which would more appropriately be called «stable
structure population theory» (Lebreton & Clobert 1991).

71



‘r ]Démog'lraqp]hlie et biologie de lpolplurlautllons

COMPUTING THE MULTIPLICATION RATE

One traditional computation assumes that the population has reached its stable age structure
and that the gross growth rate a is then a good estimator of the multiplication rate A, i.e. that
N(t)=a N(t—1). This has led to an ad hoc computation which supposes that the recruits to
breeding status take the place of dead adults and to the erroneous statement that the number of
individuals in one year can be expressed simply as the sum of the adult survivors from previous

year sN(7-1), plus the recruits R(f) = pN(z-1), as

N@)=sN@E-1)+pN(E-1)
=(s+p)N(E-1) (2.5)
=BNE-1)

where N(7) is the total number of breeders in year 7, s is the constant adult survival rate, and

p = ms; is the fraction of recruits or constant adult fecundity m times the juvenile survival s;.

B =s+ms; is then considered as an estimate of A (Harris 1983, Vermeer & Devito 1989,

Brooke 1990, several examples in Clutton-Brock 1988 and in Newton 1989). Unfortunately,
even under the above restrictive conditions (stability, and s, m, and s; constants), equation
(2.5) is not true in general because (excepting the case of species with age of first breeding
o= 1) the new breeders R(f) recruited in year ¢ were not born at # — 1, but at # — ¢. So that
R(t)=N({t—-a)msys;---s,_1. Accepting equation (2.5) would mean that the number of
recruits in year 7 is the same as in year 7 + o for every . This is never true excepting if

population is stationary, even if the population structure has reached its stability. Therefore,

equation (2.5) is wrong and should be restated as:

N@)=sN({-1)+N(t—-a)ms,s; s

a-1

(2.6)

In contrast with equations (2.1) and (2.3), the latter model assumes that fecundity and survival

are constant form age o onwards. Assuming exponential growth, N(¢)=A*N(t—-a) and

N(t-1)= 27Nt - ), lead to:
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A=A s—ms, 05, =0=0(4) 2.7)

which is the Leslie equation (2.4) under the above restrictive hypotheses (appendix B). The

largest real positive root of equation (2.7), or first eigenvalue, is an estimation of the
multiplication rate A. Equation 2.7 can be solved iteratively, for instance by the Newton—

Raphson method (see Keyfitz 1968, or Anderson 1975).

A, =4 - YA)
v'(4)

starting e.g. from A, = 1, iteration converges to five digits in less than five cycles.

Using B as an estimation of 4 would for instance consider that birds recruited at age 3 have the
same effect on the population turn over as birds recruited at age 7, which is obviously wrong.
Furthermore, in most species, females recruit progressively from age & to age @ with an age—
specific probability of breeding a; < 1 (Lebreton & Clobert 1991, Croxall & Rothery
1991:288-289; see the Herring Gull and the Black-headed Gull in Table 1.1 for examples).
Hence, in general, the polynomial ¢(4) is more involved than (2.7). In all cases, A should be

obtained using standard algorithms. That is what is done by the software as those listed in
Table 2.2.

In practice, when using those models, one has to understand the meaning of each parameter
carefully. A common mistake is to do the calculation with fecundity expressed as a number of
young per pair (e.g. Brown 1972, and Gargett 1972). The model being restricted to the female
‘segment of the population, the fecundity must be expressed in females per female. Frequently,
one will assumes a balanced sex ratio at birth and uses fecundity in young per females, divided
by 2.

Another frequently used statistics is the «net reproduction rate» R, (Keyfitz 1968:21,
Charlesworth 1980:32). It is the lifetime expected number of female offspring per new—born
female, while the «lifetime reproductive success» is the mean number of offspring of both sexes
produced by female that survives to breeding age (Clutton-Brock 1988, Newton 1989). Ry can

be obtained as:
w(1) =2so 8ee8,m; =R, (2.8)
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FIGURE 2.1. Discrepancy between A and its estimation by ad hoc computation [,
according to A in 100 simulations. A: Herring Gull; 4: House Martin; <> tits; A: Puffin;

% Glaucuous-winged Gull; (J: Kittiwake; &: Manx Sherwater; : biologically acceptable

situations; ®: unlike situations (e.g. all demographic parameters from tits but first
breeding at age of three).

Under the restrictive hypotheses s; = s and m; = m, one obtains

= 4 o - 24 34 _ Mo Sq-1
Ry =msy -5y 1 +msy-+Sy_1S+mSy-+Sy_18° +mSy+++ 85 18" +...= B T
B-s

i.e. the ratio between recruits and dead individuals, which reduces to R, = —
=5

RELATION BETWEEN A, BAND R,

The discrepancy between A and S can be important and is unpredictable (Figure 2.1). There is
no functional relation between A and S because A depends on ¢, while 8 does not. It can be

shown that f always exaggerates the departure from stability (Figure 2.1, Appendix C).
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TABLEAU 2.1. Computation of the fecundity that would be necessary to make A4
reach the value of B calculated with the real fecundity of the species.

% Breeders (p;) Survival rates Ageof | Fecundity |Multiplication
youngest e References
breeders —
2y | 3y | 4y | 5y | 6y Ly+ So | s | 52| s3] s4]|ss (%;.E;& ss;ry B A
Rissa tridactyla
| | 100[ I I | .70J 85 | 85 | 85 | 85 | 85 | 4 | 1.04 | 1.28 | 1.074 | 1.046 |Danchjn&Monat 1992
Larus glaucescens
I |100| | | | 4l | 90 | 90 | 90 I 90 I 90 | 4 | 0.85 | 0.93 | 1.027 | 1.020 IVermeer&Devito 1989
Larus argentatus
I 1 | 14 | 69 l 92 |100| 71 | 87 | 91 |.91 I 91 | 91 | 3 | 130 |2.721_>/| 1.201 [ 1.106 |Migot 1992
Larus ridibundus
45 | 61 | 55 | 100| | | 40 | 82 | 82 | 82 | 82 | 82 | 2 | 1.50 |2.209/| 1.069 | 1.010 |Lebretonetal. 1990
Fratercula arctica
| I I 70 | | I .83 | .83 l .83 | .83 | .83 | .96 I 5 ' 0.80 ] 1.05§/| 1.070 I 1.051 |Han1's 1983
Puffinus puffinus
I 100| | | | 76 ] 76 | 76 I 76 | 90 I 90 l 4 | 0.70 | 0.74 I 1.017 | 1.012 |Brooke 1990

$ 2 times f; because f; is the number of newborn females per breeding female aged i.

a/ Fecundity which would be necessary in order to force 4 to reach [ (computed with real
fecundity). b/ This value is much higher than highest fecundity ever observed in the
species. ¢/ This value is above the highest fecundity observed in the species.
d/ Impossible value because Puffins lay only one egg.

A computed from demographic models using ULM software. As shown in Figure 2.1, the
discrepancy tends to increase with the value of A.

The fecundity needed to compensate for the discrepancy between 8 and A can be out of
biological range (e.g. Puffin in Table 2.1). It is thus of paramount importance to calculate A
properly (i.e. with demographic models) when estimates of the asymptotic multiplication rate

are required. Furthermore, demographic models give other outputs which are of interest to the

population biologist.

MEANINGFUL DEMOGRAPHIC OUTPUTS

Discrete time models for seasonally breeding populations are valid on their own, not only as
approximations of continuous time models (Henny ef al. 1970, Murray & Garding 1984,
Eberhardt 1985), and projection matrix models are widely used in population biology
(Groenendael ef al. 1988). Some of the main outputs of discrete time models are detailed

below.
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FIGURE 2.2. Meaning of the asymptotic multiplication rate calculated by demographic
models. Full line: actual changes in number with time; Dashed line: changes in number
that would occur if the demographic parameters, estimated at time ¢ remain constant.
Population growth would become exponential after only a few breeding cycles.

The multiplication rate

In practice, demographic parameters are estimated under particular environmental conditions
and population numbers. A calculated from such estimates would be the rate of multiplication

if the parameters remain valid and after a stable age structure has been reached.

In this respect, A is intuitively the rate of an exponential curve tangent to variation of the

population at time 7 (Figure 2.2). Although it is derived from a model assuming constant
parameters, it characterizes nevertheless growth under particular conditions even in the
presence of complex variations in parameters, and even if it does not lead to a forecast of

population size.

When estimates of all demographic parameters are available, the obtained value of A can be
viewed as an estimate of the true unknown A and its sampling variance can be computed
(Daley 1979, Lande 1989, Houllier et al. 1989, Alvarez—Buylla & Slatkin 1991). When the
two kinds of estimates of 4 (those obtained from estimates of demographic parameters using

demographic models and those obtained from density-independent models from counts (eq. 6,

see Nur 1987)) are available and accompanied by estimates of their variance, a formal
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comparison is possible, assuming a normal distribution of estimates. Such comparisons can
provide information on the emigration/immigration patterns (Danchin & Monnat 1992). Both
estimates can also be compared with the theoretical value 1, as a test of stability (Lebreton
1989, Lebreton & Clobert 1991:110).

Age structure of the population

The asymptotic stable age-structure N; of the population is proportional to:
5,47, 5o, A7%, 5,8,8,47°,.... Owing to the ergodic property of populations, constant parameters
always lead to the same N;, whichever the original age-structure. This kind of output is helpful
for managing exploitation rates by cohorts (Lande 1989). However, it is not very useful for
demographic inference (Caughley 1974) because of a low sensitivity to permanent changes in
parameters (Lebreton & Clobert 1991).

Reproductive value

Reproductive value V; is a sequence of @ terms weighting the relative value of the individuals

of each age—class as « seeds » for future population growth (Caswell 1989). The terms of this

sequences are:

-1 -2 -3 -0+l
Sty + Sy S\ A7+ 5,m.8,85, A7 + 5,m, 8,8, 8,47 +. . Asymys o5, A0,
=1 -2 -3 —o+l1
S A~ + 5y, A7 + s, 5,8, 7+, Asymy s, s, AT,
-2 -3 —o+]
S A+ s S A7+ AsmyS,eees, (AOH,

soma; ﬂ—wﬂ

where the first term sums up to unity while the other ones are smaller excepting, as a function
of survival and fecondity, some of the subsequent ones. Hence reproductive value is an

estimate of relative fitness per age—class and it is helpful in cohort analysis and management.
Coefficient of convergence

The stable age—structure can be reached with a relative speed depending upon the original

observed structure of the population. The relative speed or convergence rate Inp is measured
by the damping ratio p=|A,|/A, and it allows to know the deviation of the asymptotic behavior

from the actual behavior of the population, as illustrated in Figure 2.2.
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FIGURE 2.3. Relative sensitivity of the asymptotic population multiplication rate A, to
survival and to fecundity, as a function of generation time 7.

Generation time

The age—structure of breeders, multiplied by fecundity, is made up of the terms of the Lotka
equation, which sum up to unity: ms, A" + m,s,5,A* + m,s,s,5,A” +.... It can be considered as
the probability distribution of the ages of mothers when giving birth in the stable population.
The mean generation time 7' =2:imi SyS-++S,_, A constitutes a meaningful definition of

generation time.
Net reproductive rate

Ry is often considered as a measure of fitness (Newton 1989). However, this is only true in
species with no overlapping generations (which is not the case in birds) or in stationary
populations (Charlesworth 1980, Lande 1982, Charnov 1986, 1990), i.e. when Ry = A= 1. In
growing or decreasing populations R, cannot be a measure of fitness. Indeed two phenotypes
with identical R, but different generation times should not contribute equally to the population
turn over: the category with the shortest generation time would have the highest fitness in a

growing population but the lowest fitness in a declining one.
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Sensitivity analysis and generation time

Explicit results on the sensitivity of 4 to changes in any demographic parameter can be
obtained from a linear approximation of A through the Lotka equation (see e.g. Goodman
1971), or through a matrix approach (Caswell 1978). In long-lived species (i.e. those with
generation times higher than 2, which is the case of most birds) 4 is more sensitive to changes
in adult survival rate than to changes in fecundity (Eberhardt & Siniff 1977, Kosinski &
Podolsky 1979, Figure 2.3). On the contrary, in short-lived species the opposite is true. The
mean generation time I (Leslie 1966) plays a prominent role, which is particularly striking
when sensitivity is expressed as the relative sensitivity to changes in all fecundity or survival
rates after first year (Houllier & Lebreton 1986, Lebreton & Clobert 1991, Figure 2.3). This
role of generation time has not been clearly understood by human demographers who work on

populations with a limited range of variation in generation time.

DISCUSSION

A discussion of methods for estimating demographic parameters is beyond the scope of this
paper. However, it is fairly clear that the quality of the prediction of population asymptotic
growth rate depends strongly on the quality of parameter estimates, whether in terms of bias or
in terms of precision (Houllier ez al. 1989, Alvarez-Buylla & Slatkin 1993). For instance,
survival rates estimated solely from recoveries of birds marked as young can be subject to
many biases and are thus suspect (Anderson et al. 1985). We strongly recommend to provide
point estimates of demographic parameters, their estimated standard errors and correlations,

and information on the statistical model used for estimation.

In most situations, among the known estimates of the fitness, the multiplication rate A or

equivalently the malthusian parameter » = InA is the best one for a phenotype (Charlesworth

1980, Stearns & Crandall 1981, Murray 1985, 1990, 1992, Caswell 1989, Charnov 1990).
Comparing these parameters for different phenotypes in a population informs on their relative

fitness in that particular environmental situation.
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TABLE 2.2. Available softwares for computing the multiplication rate.

Name of Softwares Kind of computer system | Reference or address for documentation

needed

Ferson et al. 1987, 1989

RAMAS/a IBM PC or PS/2 compatibles | Exeter Publishing Ltd. 100 North Country Road

Setauket, New York 11733 USA

DERIVE IBM PC or PS/2 compatibles

Rich et al. 1989
Soft Wharehouse Inc. Hawaii

SADE (Stand Alone
Demography)

IBM PC or PS/2 compatibles | J.D. Lebreton (see address in heading)

CALMAT IBM PC compatibles

R. Quris, CNRS University of Rennes I
Biological Station of Paimpont, France

ULM  (Unified Life
Models

S. Legendre, Laboratory of Ecology, ENS

IBM PC. PS/2 or SUN4 45 rue d’Ulm, 75230 Paris Cedex 05, France

ULM was used to compute 4
in Figure 2.1 and Table 2.1

TABLE 2.3. Relevance of demographic models outputs for evolutionary

biology and management.

OUTPUTS

SIGNIFICANCE AND RELEVANCE

Multiplication rate 4

Best estimate of fitness. Comparison of different estimates
of 4 between themselves or against 4 =1

Age—structure N;

Managing exploitation rates by cohorts
(hunting, fisheries, forestry)

Reproductive value V;

Estimate of fitness per age—class. Cohort management.

Damping ratio |A,|/A

Allows to estimate the coefficient of convergence toward the
stable age—structure. Management of exploitation cycles.

Generation time T

Provides information on the population turn over and
calibrates the sensivity of 4 to fecundity and survival.

1/T is the rate of increase of the mean number of
overlapping generations per breeding cycle.

Net reproductive rate Ry

Expected number of females born from a newborn female.
Used as fitness estimator in static studies (life-history
evolution)

Sensitivity of 4

Helps determining which parameters should be measured
with greatest accuracy, and the best conservation decisions
to be adopted.
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As we showed, the multiplication rate cannot in general be obtained explicitly, and
demographic models ought to be used. This is not always realized in the literature (for a critical
reflection see Nur 1987, and Murray 1988, 1990). In practice, estimating various demographic
characteristics of wild populations involves relatively complex methods in the field as well as
for data analyses. It would not be worth measuring accurately the demographic parameters in
the field if they are only used to estimate the multiplication rate with a rough and unpredictable
biased method (Figure 2.1, Table 2.1). Only demographic models give the accuracy which is
necessary to refined biological studies. Moreover, the use of demographic models is now

simplified greatly by the existence of good computer programs (Table 2.2).

Furthermore, owing to their numerous outputs and their flexibility, demographic models make
a link between empirical and theoretical approaches. Their outputs are of first importance for
population management and evolutionary biology (Table 2.3). For example, in the White
Stork, the Leslie model showed that the decrease of the population in Alsace (France) could be
explained by a drop in survival rates after 1960 (Lebreton 1978). This involved the migratory
phase. A deeper analysis of demographic parameters showed that this was due to
environmental changes in North Africa (Kanyamibwa ez al. 1990). So, conservation measures
on the breeding grounds might be ineffective. More generally, the role of generation time in
sensitivity analysis shows that fecundity in short-lived species and adult survival in long-lived

ones should be suspected in priority in any sharp and sustained change in the growth regime.

Discrete time density independent models can be used under much less restrictive hypotheses
than those postulated for the explicit computation of A. They can be generalized to more
complex situations in which other approaches would fail. For example, if the biological
situation is well documented, it is possible to take into account the variations of the
demographic parameters in time and/or the existence of dispersion processes, i.e. when
density-dependence and/or emigration/immigration are not neglected (Caswell 1989,
Tuljapurkar 1990).

Moreover, under such complex situations, A4 keeps its precise meaning. For instance, when
density dependence is suspected it can be taken into account in the models by allowing some
parameters to vary with density. The population dynamics can then be described by a sequence
of instantaneous growth rates A(7) and a long run growth rate 4. The A(7) sequence describes

the population growth between consecutive years. They can still be considered as the slope of
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the tangent to the growth curve relating population size to time at time # (Figure 2.2) while the
long run growth rate A is uninteresting since equal to one (Ferriere & Clobert 1992, see
Caswell 1989 and McDonald & Caswell 1993 for a review). However, it is possible to have a
time—varying situation in which the population will, with probability one, grow even though the
dominant eigenvalue of every matrix in the sequence is less than one (Tuljapurkar 1990). So, in
such complex situations (which are likely to be the case of natural populations) the population
may never reach a stable age—structure and the biological meaning of A has to be questioned.
This will depend on the other eigenvalues A; (for i > 2) of the matrix, particularly the second
one A, which allows to measure the rate of convergence In(|4,|/4:) of the population structure
towards the asymptotic stable structure N, (Caswell 1989). This shows however, the
conceptual limits of the interpretation of fitness as defined by demographic models, and it is
obvious that under density dependence, the meaning of A is not as clear as in density

independent models T
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Appendix A

The synthetic matrix expression of the system of linear equations 2.2 is equation 2.3:

N(@® =L N(+-1)

known as the Leslie matrix equation when s, = 0. In a square-and-column matricial fashion:

N, _SOml

N, )

N, _ 0
_NaJ_ { L 0

Som,

Sof3

Somw
0

-1

Birds are iteroparous species frequently presenting an age @ of stabilisation of parameters, thus s, > 0. Under

the hypothesis of a balanced sex-ratio, only half of the offspring produced in a given year are females, the

number of newborn females produced per female aged i per year (m; = p;f;) is only half the number of offspring

produced per female aged i (or equivalently per pair) in a given year.

The solutions of the Leslie characteristic polynomial ¢(4) are obtained by the expansion of the determinant

equation (2.4), and can only be solved iteratively as we show e.g. by the Newton-Raphson method (see Keyfitz

1968, or Anderson 1975). One may use any of the softwares available in the market (some listed in Table 2.2)

to estimate A and other demographic outputs.

Appendix B

Under the restrictive hypotheses m; =m Vi 2 ozand s; = s V i > g, the Lotka equation (2.1 in the text) is:

W(A) =Y Asyms; sy o5, 870 =1

i=q

= I“somsls2---sa_1(l+s/l‘1 +5°A47 +s3ﬂ'3+...)

A
=A% ms,s, -8
0 122 -1
i o

-a+1
=2 smss,s, =005 Ve g
= 07319, a-1 = 7 o =

A-s A =-A"s

which leads to the Leslie equation (2.7): A% — A*'s —s,ms;s,---s, , =0=0(A).
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Appendix C

The relation between Band A can be deduced from equation (2.5) and (2.6):

B= A< a=1and/or A= 1 because

=10 =A-s-sgn=0= A=s+syn = f and/or

A=1=20(1)=1-5—5m851520841 =0 = 1 =5+ S §152.0.5 1 = 5,
B<1= 5+ 859m 81820851 <1 =0 <1 =551 5152..5 1 = P(1)

deriving ¢(A) shows that it is an increasing function:

O =al —(a-1)sA*2= 1" [aA-as+s]

the term in brackets is positive because 4 > s

then as ¢(1) > 0 and ¢(4) =0 < A < 1; and in the same way,
B>1= 5+ 59m 5152000850 > 1 = 0> 1 — 5 — 591 515000541 = O(1)

thenas ¢(1) <Oand p(A) =0 = 4> 1

Furthermore, it can be shown that:

B=1loR=p=1=1 in stationary populations,
B>l R>p>1>1 in growing populations, and
B<1o R <f<A<1 in decreasing populations.
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