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Modele matriciel type Leslie

pour métapopulations
simulation d’un systéeme « source—puits »

écemment, les modéles des populations demeurant dans des habitats fragmentés
ont acquis une importance biologique majeure. En effet, d’une part la
fragmentation des habitats naturels a la suite des activités humaines est un
processus croissant. De nombreuses populations précédemment unitaires sont devenues des
ensembles de populations locales de taille plus réduite. D’autre part, les espéces sont toujours
constituées en populations (sauf certaines espéces endémiques), plus ou moins ouvertes au flux
de génes de leurs semblables. Il existe donc un grand intérét pour la phénoménologie des

métapopulations (Hanski & Gilpin 1991).

On retrouve le début de cette tradition de modélisation dans le concept de « voisinage » de
Wright (1931) et son « modele en iles » —un ensemble de populations locales interchangeant de
fagon aléatoire des génes entre elles. Le concept de métapopulation était déja présent d’une

certaine fagon dans le modele de la « niche » écologique habitée par des populations locales
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constituant « démes », de Levene (1953). Dans cette époque, des écologues comme Kluyver et
Tinbergen (1953) discutent le role régulateur de la territorialité sur la densité des passereaux et
le généticien Kimura (1953) explique les variations de fréquences géniques a I’aide du concept
de voisinage dans son modéle « stepping stone » —modéle en iles réduit au flux de migrants

uniquement entre les populations directement voisines.

Un peu plus tard, ce sont les biogéographes qui ont continué a développer le concept de
métapopulation avec le modéle « fle—continent » de MacArthur & Wilson (1967), dans lequel
la migration est unidirectionnelle, provenant d’un population continentale considérée
inépuisable vers des populations isolées installées dans des iles, ou I’extinction totale est évitée
seulement si I'immigration est continue. D’autres écologues de populations discutent le role de
la dispersion dans la dynamique de populations (Lidicker 1975), notamment son effet
stabilisateur ou buffer effect (Brown 1969).

Une nouvelle version du modéle de MacArthur & Wilson est le récent modéle « source—puits »
de Pulliam (1988, Pulliam & Danielson 1991), dans lequel la population « source » n’est pas
nécessairement inépuisable (ni de plus grande taille, comme on le montrera au cours du présent
Chapitre) et la population « puits » n’est pas nécessairement dans une ile (ni de plus petite
taille). Morris (1991) montre qu’il est possible d’interpréter la colonisation des habitats
« puits » comme une stratégie de dispersion évolutivement stable (ESS) uniquement si la

migration est bidirectionnelle.

Le terme de métapopulation est proposé par Levins (1970) pour décrire une « population de
populations ». Le modéle de Levins suppose que le taux de migration doit étre supérieur au
taux d’extinction locale pour maintenir une fraction des habitats disponibles occupés. Jusqu’ici,
les modéles ne tiennent pas compte des différences de taille, ni des taux de migration et
d’extinction entre les démes, ni de leurs structures internes, ni de la qualité ou structure des
habitats (patches) occupés. C’est alors que les chercheurs étudiant des métapopulations se sont
penché a développer des modeles considérant 1’'une ou 'autre de ces caractéristiques (Lande
1987, Soderstrom 1989, Hanski 1982, 1991, Hastings 1991), ou méme a introduire la

stochasticité (Verboom et al. 1991). Cependant, la grande intégration reste  faire.

Ayant opté pour les modeles en temps discret, le concept de métapopulation nous offre
I’occasion de montrer que dans ce cas ils sont aussi les plus souples, tant sur le plan théorique

que pratique. Nous montrerons comment intégrer dans la matrice de Leslie plusieurs
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populations, la migration, des différents taux de multiplication pour chaque population locale,
et la dépendance de la densité. Les résultats de la matrice ainsi configurée expriment I’équilibre
global du systéme, avec le taux de multiplication de ’ensemble des populations locales, et la
structure asymptotiquement stable entre populations locales et a I’intérieur de chacune d’elles.
Le résultat central consiste a montrer, par simulation, I’effet stabilisateur de la migration sur un
systeme métapopulation, malgré la situation de déséquilibre que peuvent présenter les
populations locales. Il est vrai cependant que, dans un systéme « source—puits », si au lieu de
faire intervenir I’émigration d’une population excédentaire vers une autre déficitaire on fait
intervenir une mortalité indépendante de la densité plus élevée dans la population « source », le
résultat, pour elle, serait le méme en termes de 1’équilibre démographique qu’elle atteindrait.
Mais Dintérét est d’observer le résultat du systéme, y compris 1’équilibre atteint par les
populations qui jouent le role de « puits ». Et bien entendu, si I’on s’intéressait a une étude
évolutive, il faudrait tenir compte aussi de 1’émigration des populations « puits » vers les
« sources » pour pouvoir expliquer le role de la dispersion comme une stratégie évolutivement

stable (Morris 1991).
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ABSTRACT

Models concerning populations living in fragmented habitats are of increasing biological
interest. As a consequence, there is a growing interest in metapopulation models and
source-sink models. In this paper we introduce elementary discrete-time matrix models
for subdivided populations. We discuss the stabilizing role played by migration, in
particular in the presence of strong rates of increase and of population structures (e-g.
age). Although the emphasis is on demography, we expect applications in evolutionary
biology. Another hope is to provide basis to graduate students, with emphasis on the
philosophy of model building and use rather than on mathematical difficulties.

Keywords: Population dynamics, source-sink models, metapopulation models, matrix
population models, migration, population regulation.

1. Introduction

The literature concerning population dynamics models is very large and diverse.
This is in particular the case for models concerning “subdivided populations”, al-
though the biological interest in the subject has been fairly recent. The biological
questions addressed with such models deal with the emergence of the metapopula-
tion concept [55,14,52,32,69,11,33,28] and the consequences of habitat fragmentation
[51,18,17,68].

From the demographical and genetical points of view, migration plays a main
role in subdivided population dynamics (e.g., [2,4,21,38,6,23,29,36,31,16,1,34,13]).
Models of migration embedded in a density-independent growth process have been
particularly proposed by Lefkovitch [47], Rogers [66], Usher and Williamson [75]
and Lebras [43]. Such models have been considered in a stochastic context, both in
continuous [5,37] and discrete time [3,76).

On the other hand, following the classical logistic growth models (from [77], and
for present state of discussion see [72,24-26,59,73]), density-dependent models were
developed in innumerable ways (for density-dependent matriz models e.g., [50],
and many authors for density-dependent continuous-time models). In particular
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discrete-time density-dependent models have retained a lot of attention because of
their diversity of behaviour (e.g. [56,70]).

Population biologists have linked very early regulation and dispersal [39,8,54].
However, most often (and this has been emphasized by e.g., [60,61]), density-
dependent models including a dispersal component have rarely been considered until
recently (e.g., [67]). If so, they have been treated in an ad hoc way, with a strong
emphasis on simulation (e.g., [27]), while mathematical approaches (e.g., [42]) are
technically difficult.

Our goal in this paper is to present some basic results on models for subdivided
populations in a simple and progressive framework. We will try not to depart from
the principle of “economy of hypotheses”, which seems to us particularly impor-
tant in such a pluridisciplinary endeavour, to reach conclusions based on minimal
assumptions.

Our hope is to provide guidelines for a better assessment of the literature which
seems to us extremely vast and confusing. Another hope is that this text could serve
for lectures for graduate students, with an emphasis on the philosophy of model
building and use rather than on mathematical difficulties. This is why we restrict
our attention to discrete time models. Many authors have firmly underlined that
discrete-time population models are worth per se [35,45,15,30,10]. We also include
in an appendix instructions to do the calculations involved, using program ULM
[46].

2. A Simple Model

2.1. A Simple Growth Model

We consider two populations with Nj(¢) and Ny(¢) individuals at time ¢. Each
population is supposed to grow in a density-independent way, with respective mul-

tiplication rates a and b
Nl(t) = aNl(t = 1)

(2.1)
Ng(t) = sz(t - 1)
These equations can be easily expressed in a matrix fashion:
Ni(t)] _la O] [Ni(t=1)
Na(t)| — |0 b) | N2(t=1)
0 (2.2)

N(t) = [‘(‘) b]N(t——l)
N(t) = CN(t — 1)

This matrix formulation is clearly analogous to a multiplication by a constant.
This underlines the absence of any regulation. One can see this model of simul-
taneous growth as a simplistic model for two non-connected populations, with no
age-structure. Each population grows geometrically and increases to infinity if a
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and b > 1; according to Nj(t) = a*N1(0), N2(t) = b*N,(0), or in a matrix manner:
N(t) = C'N(0). We may consider also that one population increases while the
other one decreases, i.e., @ > 1 but b < 1. This last case constitutes a first simple
model of population growth in a heterogeneous environment.

2.2 A Simple Migration Model

Consider now two populations with constant numbers and migration between them.
We denote as p and ¢ the proportion of individuals staying in populations 1 and 2,

respectively, at each time step. Thus, between ¢ — 1 and ¢:
Ni(t) = pNi(t — 1) + (1 — ) Na(t - 1) (23)
Ny(t) = (1= p)Na(t = 1)+ qN(t = 1) |

or, in matrix notation:

[l =120 ] M)

No=[, 7, 7Y Ne-

(2.4)

N(t) = MN(t - 1)

It is easy to check, by adding the two equations in (2.3) that the total number
of individuals does not change over time.

Thus, the behaviour of the model can be summarized by the variation of the
ratio Uy(t) = Ni(t)/(N1(t) + Na(t)), as a function of the original ratio U;(0) =
N1(0)/(N1(0) + N2(0)). Matrix algebra leads to (e.g., [3] p. 53):

1-¢ (p+g-1)
T=p+(-9 G-p+d-g oM-HOI-C "’)[Ul(‘g])s;

hence tl_l{g) Ui(t) = Zﬁlﬁfl_—?ﬁ = U;(c0), the convergence to this value is damped
according to m = p+q— 1, which varies between —1 (p=¢=0)and 1 (p=¢=1).
When m varies from —1 to 1, the overall proportion of individuals moving varies
from 100% to 0%. Hence, m measures the intensity of migration in the system.
Since Eq. (2.5) reduces to Uy (t) = Ui(00)+m*Z, the sign of m determines the type
of convergence to Uj(00).

If m < 0 (strong migration), the equilibrium is reached by damped oscillations;
if m > 0 (weak migration), there are no oscillations; and if m = 0 there is an
immediate convergence to U;(c0). Figure 1 summarizes the possible behaviours of
this model.

The model can be seen from the probabilistic point of view, p and ¢ being then
interpreted as probabilities of presence, 1 —p and 1— g as probabilities of migration.

Ul(t) =

It constitutes a simple Markov chain.
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Fig. 1. Behaviour of N;(t) and N2(t) in relation with m value; Ni (0) = 66.67 and N, (0) = 33.33.
(a) immediate stability: p = 0.6,q = 0.4, then m = 0; (b) oscillations toward stability: p = 0.15,
g = 0.1, then m < 0; (c) no oscillations toward stability: p = 0.725, ¢ = 0.675, then m > 0.
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Fig. 1. (Continued)

This model can be easily extended to n-sites. In particular, one may consider
movements restricted to neighbouring sites. Mathematicians will speak of “ran-
dom walk” models ([3], ch. IV, pp. 24-37,[4]), biologists of “stepping stone” mod-
els [75,63]. When such a random walk occurs on a line, the transition matrix
will have elements only on the three principal diagonals, each column summing up
to unity:

p (1-p)/2 0 .0
1-p p 1-p/2 0 ...
M, = 0 (1-p)/2 P 0 (2.6)
0 (1-p)/2 ... 1-p
0 P

Such models have been considered in population genetics [58].
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2.3. A Svmple Growth and Migration Model
2.3.1. “Coupling” Growth and Migration

We will now link the two previous models. We consider that, between t—1 and ¢, the
two populations are submitted to growth and then to migration. By substitution
of the linear equations (2.2) and (2.4), or directly by matrix calculus, one gets

o] =12 137108 ST [t
N(t) = MCN(t — 1)

[l = La®s ][22 0]

N(t) = GN(t - 1) (2.7)

MC and CM have the same eigenvalues and, thus, will lead to the same results in
terms of growth rate, so there is no problem in considering growth first and then
migration, rather than migration first and then growth. The study of matrix G will
allow us to understand the behaviour of a two populations system, with growth and
migration. The characteristic polynomial of matrix G is:

A2 —(ap +bq)A + abm = 0 g (2.8)

where m = p+ ¢ — 1 as before, measures the intensity of migration.

The greatest root of the characteristic polynomial is the greatest eigenvalue of
matrix G. It measures the asymptotic multiplication rate of the system, since
N(t) = AN(t — 1) if t — oco. Solving (2.8) gives:

(ap + bg) £ \/(ap + bg)? — 4abm

A= 2

(2.9)

where m > 0 or m < 0 determines which of the two roots of Eq. (2.9) is the greatest
one.
If @ = b, the multiplication rate A becomes equal to a, as it can be obtained

from Eq. (2.9).
+ / - 2)2
r=o2t9 2("” ¥ _ . (2.10)
If p+ ¢ =1, m becomes equal to zero, the multiplication rate reduces to ap + bq.

This means that the system grows at a rate intermediate between aand b: b < A < a
ifb<aanda< A<bifa<hb.
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2.3.2. A Simple Model in Heterogeneous Environment

A relevant case is when b < 1 < a and p < ¢ = 1. Population 1 has a surplus (a > 1)
and exports individuals (at rate 1—p) to population 2. Population 2 shows a negative
balance and does not contribute migrants to population 1. Although this can be
irrelevant in an evolutionary perspective, it may be a reasonable approximation
from the demographic point of view. Thus, m = p and

= ap+b+/(ap+b)2 —4abp ap+b+£./(ap—b)?
- 2 - 2

= sup|ap, b] (2.11)

The latter expresses that migrants to population 2 “acquire” the multiplication rate
b < 1. If they are too many migrants, i.e., p < 1/a, then ap < 1; therefore, the
numbers decreases globally at a rate always bigger than b. On the contrary, if there
are not many migrants to population 2, i.e. p > 1/a, then ap > 1; therefore, pop-
ulation 2 receives an exponentially growing number of immigrants and the system
increases at the same asymptotic rate in both populations notwithstanding that
b < 1. Generally, there will be an intermediate “coupled” growth rate, between the
values of the “uncoupled” growth rates.

This simple growth-and-migration model is a model of the dynamics of a subdi-
vided population in a heterogeneous environment, or in the terminology of Pulliam
[60], a source-sink model.

3. Introducing Density Dependence

3.1. Density Dependence for One Population

A straightforward density-dependent model (DDM) for each population can be writ-
ten as

N,'(t) = a,-(N;(t = 1)) X N,'(t = 1) §= 1, 2, (31)

a;(N;(t — 1)) is the density dependent multiplication rate of population i. For the
sake of realism a;(z) must be a decreasing positive function, for example

exp[ri(1 — N;(t)/K;)] - (3.2)

This model is one of the well known discrete time logistic growth models [65,57,40].
Its behaviour is close to exp[r;t]N;(0) for small N;(0), and, at least for small r;,
N;(t) grows in a sigmoid way up to an asymptotic level K.
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3.2. Migration and Density Dependent Growth

A straightforward way of coupling density-dependent growth with migration, from
Egs. (2.7) and (3.2), is:

[Nl(t)]_[ a(M(t-1D)p  b(No(t-1))(1-q) [Nl(t—l)] (3.3)
No(t)] — La(Ni(t=1))(1=p)  b(Na(t—1))g Ny(t-1) '

or

N(t) = D(Ny(t - 1), No(t = 1))N(t - 1)

The four terms in the matrix become decreasing functions of one or another pop-
ulation size. The same type of model would be obtained with a density-dependent
migration: ¢ function of Ny, p function of N;. Thus, under growth or growth and
migration density-dependent functions, the behaviour of the whole system will be
similar, excepting little differences in the structure of the models that will affect
their second order behaviour. Density-dependence in migration only, is unable to
stabilize the system (Clobert, pers.comm.).

Coming back to the subdivided-population-in-a-heterogeneous-environment
model of Eq. (2.11), let us consider density-dependence in population 1 only. Hence,
b(N2) = b, i.e., no density-dependence in decreasing population 2, with absolute
philopatry ¢ = 1. This is a slightly more sophisticated source-sink model. Popula-
tion 2 shows a negative balance because it inhabits an unfavourable environment.
If such a sink population is small compared to the source populations, the fact that
it does not send out migrants can be acceptable as long as questions about nat-
ural selection of a philopatry-dispersion equilibrium are not of concern [58]. The
present condition of the Blue tit Parus caeruleus populations inhabiting evergreen
oak forests in the south of France (Blondel unpublished, [12]), provides a good case
for the application of this model.

Under the simple hypotheses above, Eq. (3.3) reduces to

[50] = [ave oy S [Meh] o

where a(z) is, for instance, exp[r(l — Ny(t)/K1), as in Eq. (3.2). In the uncou-
pled condition (p = 1) this model leads population 1 to the equilibrium K; and
population 2 to K3 = 0, i.e., to extinction.

3.3. Numerical Study of the Density Dependent Source-Sink
Model (DDSSM)

We consider the source-sink system described by Egs. (3.4) and (3.2), with p =
09,¢ = I, = 0.7,b = 0.8 and K; = 100. The conjugated effects of density-
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dependent-regulation and migration stabilise the size of population 1 to a level below
K. The surplus of population 1, constantly exported, induces a stable size of
population 2 in spite of its negative balance. This model perfectly reproduces the
buffer effect, proposed by Brown in 1969, that may be considered as a landmark in
the development of the source-sink population concept. We have

[Nl(t)] _ [ exp(r(l — Ni(t — 1)/ K1))p 0] [Nl(t—l)]

Ny(t)] ~ Lexp(r(1 = Ny(t =1)/K1))(1—p) b] [ Na(t—1) -

_ [exp(0.7(1 = Ny(t —1)/100))0.9 0 ] [Ni(t—1) (35)
- [exp(0.7(1 — Ny (t —1)/100))0.1 0.8] [Nz(t - 1)]

The numerical results of this model are given in Fig. 2. Coupling the two populations

prevents extinction of population 2. Although the asymptotic value of population

1 is decreased to below 85, the total numbers at equilibrium is near to over 132.

_1.40
Total =131.7
_120
_100
reo Nl = 849
_60
. N,=146.7
/5 L10 15 20 |25 P

Fig. 2. Elementary behaviour of a source-sink metapopulation system, with density-dependent
growth and migration values as described by Eq. (3.5) “Source” population N1 diminishes its
asymptotic limit from 100 above 80 meanwhile “sink” population N, saves itself of extinction, and
the total metapopulation size increases up to 132 > K.
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3.4. A Formal Study of DDSSM

The uncoupled (i.e., when p = ¢ = 1) equilibrium of the two populations system is
simply: [Ky, 0] = [100,0]. The coupled equilibrium is obtained from the system

N{ = pa(N{)N{ and
1 (NT)N] (3.6)
N3 =bN;3 + (1 - p)a(N{)NY

in which N{ and Ny are Nq(t*) and Ny(t*) respectively, at equilibrium time t*,
when they do not change anymore. The first equation yields:

1 = pa(N7Y)

Nt

= exp(In p) exp (r (1 e ))
[T
=exp|(r+Inp—- N E

=exp | (r+Inp) l————NlT
K1<1+ ”)

r

(3.7)

This expression is identical to that one of the uncoupled condition but with » and
K, replaced respectively by 7* and K} according to

r=r+Inp and

Inp (3.8)

K} =K; (HT) =N} < K;

In fact, as noted by JL Gouzé (pers. comm.), population 1 behaves according to
Ni(t) = Ni(t—1)exp (r* (1 - N—‘l({tl._—ll)) ;7* = r+4In p shows that the rate Inp < 0
corresponding to migration and removed from r, plays the role of an extra-mortality
for population 1. When p < 1/a(0) = e~",r* < 0 and K] ~ 0, so that population
1 is eaten out by its migration rate to population 2.
From the second eguilibrium Eq. (3.6), and taking in account Egs. (3.7) and
(3.8), we get
(1-b)N; = (1-p)a(NT)NT

2T (1-b p (3.9)
= = F np
= o (145

which can be denoted as K3.
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For population 2, immigration always implies an asymptotic size Kj greater
than under the uncoupled condition where K5 = 0.

We reach thus the following conclusions. First: contrary to the uncoupled
condition, in density regulated metapopulations, migration from good toward bad
habitats induces a “buffered” equilibrium. It is very interesting to observe that
the total population size at equilibrium Ny + Ny varies with migration intensity
1 — p and may exceed K, notwithstanding that the “carrying capacity” [Kj,0],
prevailing in the uncoupled condition, has not changed. Thus, it exists an optimal
migration value in relation to the total population size. The maximum of (N + N3)
as a function of p, is obtained explicitly locating iteratively the point where the
first derivative of this function equals zero, i.e., for pope = 0.744239.... To this
Popt corresponds a total equilibrium population size of [N} + N3]ope = 157.118816
(Fig. 3).

Second: there is a paradox, similar to those of seasonal environment models
[19,44], in the sense that the equilibrium levels of populations cannot be simply
interpreted as “carrying capacities” of the environment [59,24-26,73].

K +K;

[ N+N, ], = 157.118

opt

|20

0.50

0.4966 0.7442 P

0.8333
N, <N, -1 N, >N,

,0.70 ,0.80 ,0.80

Fig. 3. Variation of total asymptotic limit metapopulation size in function of fidelity rate p.
Ny > N3 whenever 0.8333 < p < 1, N < Ny whenever 0.4966 < p < 0.8333, Nf + N reaches
its maximum when p = 0.7422, extinction occurs whenever p < 0.4966.
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N,;=99.32

20 40 60 .80 \ 100

N=57.8

Fig. 4. Codrdinates {N;*,N}} in function of population 1 fidelity rate 0 < p < 1. The maximum
value of N} + NJ = 157.12 is reached in the point where the orthogonal projection to the first
diagonal is tangent to the curve. Then Ny = 57.8 and Ny = 99.32.

Figure 4 shows the variation of { N}, N5} coordinates for 0 < p < 1. [Nf+N3]opt
is reached in the point where the orthogonal projection to the first diagonal is
tangent to the curve. Computing Egs. (3.8) and (3.9) for p,p, — always considering
figures of Eq. (3.5) —, N7 is then equal to 57.800992 and N5 to 99.318111. Between
p = 0.496585 and p = 0.833333, Ny > N;. Hence, a third conclusion: there is
no a direct link between the population size, at equilibrium, and the demographic
regime of the population.

4. Effects of Strong Rates of Increase
Under uncoupled condition, the dynamics of population 1 is described by:
Ni(t) = exp(r(l — N1(t — 1)/Kq))N1(t — 1) (4.1)
It is well known that stability of equilibrium K; may be studied by linear approxi-
mation of Nj(t), in the neighbourhood of Kj.
Ni(t) = Ky — (1 —r)(Ky — N1(t - 1))

:Nl(t—1)+T(K1—N1(t—1)) (42)
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For 0 < r < 2, there is a local stability: after a deviation of magnitude (K; —
N (t—1)), the next deviation (K; — N;(¢)) is smaller than the former one in absolute
value, and the system reaches gradually K;. The equilibrium begins to be unstable
when r > 2, then it appears a non-periodical oscillatory regime, passing by growing
oscillatory periods as long as r value increases up to 2.6924... For r > 2.6924... a
chaotic regime appears, non-periodical, whose value points never pass more than one
time through the same real number. Figure 5 illustrates the successive bifurcations
in the asymptotic values of N; when r increases.

Under coupled condition, the dynamics of the system, described by Egs. (3.2)
and (3.4), is buffered because r is replaced by r* = r + Inp, (Eq. 3.8). It is easy
to observe that as long as 0 < p < 1,Inp < 0, and r* < r; this buffers strong rates
of increase. Hence, fourth conclusion: migration has a stabilizing effect over the
population trajectories (Fig. 6).

When r increases, the probability of extinction — in stochastic counterparts of
this model (e.g., [20]) — increases (Fig. 7), just because N; is more often close
to zero (Fig. 5). To keep relatively low values of r buffers the extinction risks.
Thus, fifth conclusion: migration has well then a cushioning effect over extinction
probabilities, including local ones.

N,
r=02, p=1, b=038

|200 a(x)=exp [r [1—%]}
1
N(0)=1, K,=100

100

(a)
Fig. 5. Non-oscillating, oscillating, and chaotic regimes of a DDSS system in function of the value
of ;p = 1,a(z) = exp(r(1 — N1(t)/K1)),b = 0.8, N1(0) = 1, and K; = 100. (a) Typical value of
a growing population 7 = 0.2; (b) reaching fast the asymptote » = 1.2; (c) incipient oscillations
r = 2.0; (d) convergent oscillatory regime r = 2.3; () chaos r = 2.7; (f) chaos and greater risk of
extinction r = 3.1.

145



0 (-m)f, 0 mf,
s § 0 0
0 mfi 0 (A-m)f
o 0 5 g

]Délumoglraqp]hlle et b'mloglle de populations

146

402 Lebreton & Gonzalez-Davila

N,

‘s

10

150

(b)

r=2.0
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Fig. 5 (Continued)
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Fig. 5 (Continued)
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N

t
(f)
Fig. 5 (Continued)
r=27 p=09 then r*=26
Nl
N2
5 10 18 20 |25 30 35 10 15 '
(a)

Fig. 6. Moving from a chaotic to a stable regime thanks to migration’s buffer effect. r = 2.7,9 =
1,a(z) = exp(r(1 — N1(t)/K1)),b = 0.8, N1(0) = 1 = N2(0), and K3 = 100. (a) p = 0.9 then
r* = 2.6; (b) p = 0.6 then 7* = 2.2; (c) p = 0.3 then r* = 1.5, — observe the great size of “sink”
population N2 (t).
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To

time

Fig. 7. Bifurcations of N1 /K occurring at r = 2,2.53,2.66,2.69, and chaos from r = 2.7.

5. Effect of the Structure of the Population
5.1. A Structured DDSSM

A structured DDSSM in its simplest case contains only two “populations”, each one
having a structure, e.g., in age. Formally, modeling does not pose major problems.
N; and N, are now column vectors reflecting the structure of each population. We
consider here the simplest case of only two age-classes, one of immatures and one
of adults: ny; and nj5 for population 1, ny; and nys for population 2. Possible
applications of this model are frequently found in nature, e.g., the Peregrine Falcon
Falco peregrinus anatum in California [78]. Consider first, in a fashion similar to
Egs. (2.1)-(2.4) and particularly in Egs. (2.7) and (3.1), density-dependent growth
and migration

N (t) = PANy(t — 1) + [T - Q]BNy(t — 1)

(5.1)
Na(t) = [I— PJAN;(t — 1) + QBN,(t — 1)

P and Q are now phylopatry matrices, [I — P] and [I — Q] migration matrices.
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Thus, one may rewrite Eq. (5.1) as

No=[Nio] = [xem | am ) Mo

where G is equivalent to matrix G in Eq. (2.7), but for structured populations.
To model densily-dependence A and B transform to functions of the numbers
in each population

[Nl(t)] _ [ PA(Ny(t—1))  [I-QIB(Ny(t - 1))] [Nl(t— 1)]
No(t)| — [[I-PJA(Ni(t—1)) QB(Na(t—1)) No(t-1)] (5.3)
N(t) = D,(Ny(t — 1),Ny(t — 1))N(t — 1)

] =G,N(t-1) (5.2)

where Dy, for structured populations, is equivalent to matrix D in Eq. (3.3).

5.2. Numerical Study of the Structured DDSSM

Such a model for two populations each one with two age-classes, can be studied like
that of Eq. (3.4). Hence, population 1 is densily-dependent, increases and yields
migrants to population 2; population 2 is not density-dependent, decreases and
does not yield migrants. Then A(N;(¢)) is a function, B(Ny(?)) is a constant, and
Q = I. Equation (5.3) becomes:

[Nl(t)] [ PA(Ny(t—1) o] [Nl(t—l)]

Ny(t)] ~ [I-PJA(N;(t=1)) B] [Ny(t—-1)
ni1 [0 pfi(t—1) 0 0 ni1
ny o S S 0 0 ni o

2| _ » 5.4
nay| |0 (A-pfaE-1 0 f| [noy (54)
ng2d, L0 0 s s ngod,

where, as in a typical Leslie matrix [7,53,48,49], there are fecundities f; and f,, and
survival s. Fecundity f; is a density-dependent function as described by Eq. (3.2),
ie., fi = exp[r(l1—ny2/K1)], and f; = 0.8 is constant as is the case for b in Eq. (3.5).
Survival is s = 0.5, it appears also in the lower right corner of A and B, as proposed
by Usher [74] to include in a single group all older individuals. Obviously, survival
rates differing across populations could be considered in case of need. We consider
K, =100 and r = 3.1.

The maximal rate of increase for population 1 is obtained for n; = 0 and p = 1.

Then PA(N;(t)) equals
[0 exp[r]] (5.5)

S S

with dominant eigenvalue A = 3.5909. Then the log-growth rate In A = 1.2784. It is
analogous to r* = r + Inp of the non-structured DDSSM (Eq. (3.8)). Without and
with migration, i.e., p = 1 or p < 1, the general behaviour of these age-structured
populations is similar to that of the non-structured ones (see Fig. 8 and cfr. Fig. 5).
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p=1
| 200]
| 154
1 Rz
5
/
| 10 20 ,30 40 |80 60 70 , 80 ,80 ¢
(a)
p=09
| 200};

(b)
Fig. 8. General behaviour of two coupled age-structured populations. 71;(0) = 1,n;2(0) =

n21(0) = n22(0) = 0, f1 = exp(r(1 — n12(t)/K1)), f2 = 0.8,s = 0.5,K; = 100, and r = 3.1. (a)
Without migration: p = 1; (b) with migration: p = 0.9.
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To observe more precisely this behaviour (Fig. 9), the numbers of adults ny,
may be plotted as a function of the numbers of immatures n;;, in population 1.
Considering first the uncoupled condition, i.e., no migration p = 1, then N3 = 0.
The result illustrates the displacement of the successive {ni;,n;5} values, turning
around a starting point, but never getting back to the same pair of values, going
over close but always different cycles, i.e., an attractor.

Consider now the coupled condition. In this case, the dominant eigenvalue if
p =0.9is A = 3.4204, then In A = 1.2298. This time the result is a stable limit
point reached very slowly.

The same, divergent and convergent, atiractors can be attained notwithstanding
the initial values of n11,n12, n9; and nyy were different. So, sixth conclusion: mi-
gration has alsc a stabilizing effect over structured populations; not enough anyway
to totally buffer the destabilizing effect of age-structures and of partial density-
dependences. '

200 p=1 50 time steps

(a)

Fig. 9. Different asymptotic limits of successive pairs of {n11,n12} values in time, as a function
of fidelity rate p. (a,b,c) p = 1, so no convergence to a stable age-structure of population 1. (d,e)
p = 0.9, so convergence to a stable age-structure of population 1, whatever the starting numbers
of individuals n;j: (d) n11 = 1,n12 = ng; = 0; () n11 = 0,n12 = 7,n21 = 13, and n22 = 1.
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ny;

100 time steps

200 p=1

1000 time steps

Fig. 9 (Continued)
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Ry
20 p=00 1500 time steps
(d)
Fig. 9 (Continued)
oV)
@ p=0.9 1500 time steps

and new original n; values

120

140

(e)
Fig. 9 (Continued)
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6. Discussion and Conclusions

The DDSSM studied here allows us to demonstrate, to a certain extent, some effects
of migration on population numbers, in particular its strong stabilising role. Migra-
tion from high towards low quality habitats leads to more stability. The resulting
equilibrium levels are buffered when compared to a situations without migration,
and are linked in a complex way to demographic parameters. As a consequence,
the concept of carrying capacity appears as extremely misleading. Migration makes
less frequent the occurrence of periodicities and chaotic regimes, and reduces local
and global extinction probabilities. However, this stabilising role is not always suf-
ficient to counteract totally the destabilising effects of age (or others) structures, of
partial density-dependence, etc. Other main demographic and evolutionary conse-
quences of dispersal remain to be studied in the same DDSSM context, particularly
consequences on survival patterns, age at first reproduction and fecundity.

Concerning the modelling process itself we emphasize the need of a detailed
mathematical study. Simulations must always be strongly based on a sound math-
ematical framework. This is the only way to provide correct responses to questions
concerning equilibrium, periodicity, or chaotic behaviour. There is always the risk
of estimating by simulation quantities that do not exist, such as an average age-
structure when there is no convergence.

To run the model presented herein we have used a powerful tool especially
designed for discrete time dynamic models: program ULM (Unified Life Models
[46]). The Appendix contains a brief description to use it to obtain the results
and figures in this paper. However, many pieces of software can be used to run
this kind of simulations, such as S.PLUS, MATHLAB, CALMAT [62] and DERIVE
[64]. In all cases, attention must be paid to rounding errors and to the quality of
pseudo-random numbers generators.

It is fairly clear that our understanding of the dynamics of subdivided popu-
lations is far from adequate. Evolution is more rapid in small, at least partially
isolated, populations [41]. Management and conservation of populations depends
strongly on the degree of resilience of the populations under concern: the stabil-
ising role of migration makes it a key process among the mechanisms which have
led to the present level of biological diversity. Strong losses of biological diversity
are expected as a direct and indirect consequence of human activity [71]. Among
impacts of human activity, the fragmentation of natural habitats [22] e.g., by defor-
estation, is an issue directly related to the topic of this paper. It is clear the tools
presented here are adequate for gaining general knowledge in a fairly theoretical
context. However, we have recalled that standard demographic models, such as
Leslie matrices, can be used in the context of subdivided populations.

Our understanding on the dynamics of subdivided populations might be strongly
improved by using such tools in an empirical context, i.e., with survival, reproduc-
tion and migration rates, and their relation to density and to environmental vari-
ations, estimated from field data. Practical applications concern the dynamics of
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populations inhabiting growing fragmented landscapes, which increase everywhere
in the world, with consequences on the environment and resource management.
The population geneticists could make better use of these models, and of the first
demographical conclusions presented here, to improve the knowledge concerning
the evolution of dispersal and the micro evolution of small populations and/or
metapopulations, for example the equilibrium between migration and philopatry,
and differences in fitness between movers and stayers.
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APPENDIX: Running the Models with ULM
Introduction

There are many programming languages with good matrix manipulation abilities,
but few to perform simulations in matricial demography. Among the best known
softwares, we may cite for instance CALMAT, DYNAMAC, GAUSS, MATHLAB,
SAS, SPLUS, etc. They allow to perform more or less easily the computations
associated with matrix models. Nevertheless, none of those is specially designed for
handling demographic matrix models, and more generally, dynamic models defined
by recurrence equations. ULM (Unified Life Models) fills a gap by providing a
very powerful and subtle tool designed for demographical simulation incorporating
modern graphic abilities.

ULM is available, for PC/MS-DOS and for SUN/UNIX systems, from S. Leg-
endre at the ENS, CNRS-URA 258, 46 Rue d’Ulm, 75230 Paris Cedex 05 [46].
Models representing the dynamics of populations are defined symbolically and can
be studied interactively by means of simple commands and graphics displays.

General Features

ULM allows to consider
deterministic, age or stage classified, Leslie models,
stochastic environments and random vital rates,
density-dependent models, and
metapopulation models,
competition, dispersal and migration.
Among the main available features are:
matrix properties: primitivity, irreducibility, eigenvalues, left and right eigen-
vectors, mean generation time,
sensitivity analysis: matrix entries, lower level parameters (through formal
derivative computation), constant fitness curves,
mathematical random functions, statistical estimators, growth rate,
stochastic sensitivities, extinction probability,
lyapunov exponent computation, spectrum, correlation,
multi-model capabilities, and user defined input and output data files.

In all cases ULM starts by reading a file defining the model to be used. There are
many commands available, but here we refer only those to run the models herein.
Our aim is to help using these models in practice, e.g., for graduate teaching.

GENERAL COMMANDS

COMMAND ACTION
view displays the current model
view variable_name displays the current variable value
change variable_name new_value changes the value of a current variable
run number runs a number of time steps
graph x_variable y1_variable ... yn_variable declares variables to plot
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A.1 File and ULM-Commands for Section 2.2
The next equation (Eq. (2.4)), expressing the Simple Migration Model,

[Nl(t)] _ [ p l—q] [Nl(t_ 1)]
Ny(2) l-p ¢ J[M(t-1)
is declared in the file hereinafter. The file defines (under Pascal Language syntax)
the name and size (defmod), the vector (defvec), the matrix (defmat), and the

variables (defvar) of the model. The original values of variables p and ¢ will be
changed during the simulation.

FILE FOR THE SIMPLE MIGRATION MODEL

{ SPLMGMD.ulm = ASCCI file to run equations of section 2.2 and Figure 1
{ The model is the "SIMPLE MIGRATION MODEL"

{
defmod SPLMGMD(2)

vec : v

mat : m

defvec v(2)
nl, n2

defmat m(2)

P, 14

T-p.a

defvar n1 = 66.666666

defvar n2 = 33.333333

defvar n = n1 + n2

defvar p = 0.6

defvar q = 0.4

After ULM has read the file, the simulations may go on with the following com-
mands:

COMMANDS FOR THE SIMPLE MIGRATION MODEL

COMMAND ACTION RESULT
yscale 0 100 dimensions y co-ordinate
F1 to graph mode
run runs 20 time steps by default FIGURE la
change p 0.15 changes p value
change q 0.1 changes g value
run runs last defined number FIGURE 1b
of time steps
change p 0.725 changes p value
change q 0.675 changes g value
run nun FIGURE Ic
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A.2 File and ULM-Commands for Sections 3 and 4

To run and to perform the simulations of the model developed in Secs. 3 and 4

(o] = laome =i o] [e )]

where a(z) is exp[r(1 — N1(t)/K,], one needs the following file, which defines size
and name, vector, matrix, and variables of the model. Variable M equals the sum
of the asymptotic growth limits under migration (K + K3). A number of variable
values will change crossing over the simulation. One may notice that the matrix m
is re’evaluated at each time step since it depends on the current value of v.

FILE FOR THE MODEL OF SECTIONS 3 and 4 (Figs. 2, 3, 4, 5, 6, and 7)

{ DDSSM.ulm = ASCII file to run equations of Sections 3.3 to 4 and Figures 2 to 7
{ This model is the “DENSITY DEPENDENT SOURCE-SINK MODEL" (DDSSM)

{

defmod DDSSM(2)
mat : d

vec : v

defvec v(2)

nl , n2
defmat d(2)
f1%p , 0
f1%(1-p) , b
defvar n1 =5
defvar n2 = 5

defvar n = n1 + n2

defvar f1 = exp(r¥(1- n1/K1))
defvar p = 0.9

defvar b = 0.8

defvar r = 0.7

defvar K1 = 100

defvar M =(K1*¥(1+(ln(p)/r))) + ((1-p)/(1-b)I*K1*(1+(Ln(p) /1)) /p))

After ULM has read the file, the simulations may go on with the following com-

mands:
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COMMANDS FOR THE DDSSM (Figures 2, 3, 4, 5, 6, and 7)

COMMAND ACTION RESULT
graphtnl n2 n declares variables to plot
xscale 0 25 range & scale of x—graph
yscale 0 150 range & scale or y—graph
F1 to graph mode
run 25 runs 25 time steps FIGURE 2
Fl1 move to text mode
xscale 0.45 1.05 dimensions x co-ordinate
ysacale 0 170 dimensions y co-ordinate
change n 157.1188 changes n value
graphtn declares variables to plot
F9 addgraph on
F1 move to graph mode
F2 runs 25 time steps straight line y = 157.1188
change n 0.7442 changes n value
graphnt declares variables to plot

F2 (several times)

graph p m

parameter p 0.496 1 0.001

run (several times)
declares variables to plot

p variates from 0.0496 to 1
step 0.001

runs the number of steps defined

straight line x = 0.7442

k2 by the parameter command FIGURE:3
F1 move to text mode
run 100 runs 100 time steps
change nl 1 changes first value of nl to unity
change n2 1 changes first value of n2 to unity
xscale 0 120 dimensions x codrdinate
yscale 0 120 dimensions y codrdinate
graphtt declares variables to plot
Fl move to graph mode
F2 runs 100 time steps diagonal in Figure 4
change n 157.1188—n1 changes n value
graph nl n declares variables to plot
F3 initialises time
F2 runs 100 time steps orthogonal to the diagonal
graph nl n2 declares variables to plot
parameter p 0.496 1 0.001 P Vm“‘°:t§;°gfo%?496 ol
] g
F7 graph line_off
F2 runs the number of steps defined FIGURE 4

by the parameter command
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F1 move to text mode
skip skip off
F7 graph line_on
F9 addgraph off
graph t nl declares variables to plot
xscale 0 50 dimensions x co-ordinate
yscale 0 250 dimensions y co-ordinate
changep 1 changes p value to unity
changer 0.2 changes r value
F1 move to graph mode
run 50 runs 50 time steps FIGURE 5a
changer 1.2 changes r value
F2 runs 50 time steps FIGURE 5b
changer 2 changes r value
F2 runs 50 time steps FIGURE 5c
changer2.3 changes r value
F2 runs 50 time steps FIGURE 5d
changer 2.7 changes r value
F2 runs 50 time steps FIGURE 5e
change r 3.1 changes r value
F2 runs 50 time steps FIGURE 5f
change r 2.7 changes r value
change p 0.9 changes p value
run 50 runs 50 time steps FIGURE 6a
change p 0.6 changes p value
F2 runs 50 time steps FIGURE 6b
change p 0.3 changes p value
F2 runs 50 time steps FIGURE 6c
Fl1 move to text mode
r 1000 runs 1000 time steps
F7 graph line_off
F9 addgraph on
cpl changes p value to unity
cnnl/kl changes n value to nl/k1
grn declares variables to plot
xscale —0.5 5.5 dimensions x co-ordinate
yscale —1 12.5 dimensions y co-ordinate
parameter r 0.05 5 0.01 pvalue varsi:aet;sof"am 0.05t0 5
s s e
F1 move to graph mode
F2 runs the number of steps defined FIGURE 7

by the parameter command
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A.3 File and ULM-Commands for Section 5

To perform the simulations developped in section 5, on the effect of the structure
of the population over the Density-Dependent Source-Sink Model, the file hereafter
defines name and size, vector, matrix, and variables of the Structured-DDSSM,
grounded on the next equation (Eq. (5.4))

ni 0 pfi(t —1) 0 0 ni1
nia| _|s s 0 0 ny 2
ng1| |0 (I=-p)fait=1) 0 fof [n21
n22 t 0 0 S s ng2d, 4

where f; = exp[r(1 — ni2/K;)], f2 = 0.8,s = 0.5, and p value is formerly 1 (no
migration) and secondly 0.9 (migration).

FILE FOR STRUCTURED DDSSM (Figs. 8 and 9)

{ STRDDSSM.ulm = ASCII file to run equation of Section 5 and Figures 8 & 9
{ This is the "STRUCTURED DENSITY DEPENDENT SOURCE-SINK MODEL"

defmod STRDDSSM(4)
mat : G
vec : v

defvec v(4)
n11 , n12 , n21 , n22

defmat G(4)

0. pxf1 , 0, 0
s, s, 0, 0
0, 1-p)*f1 , o, f2
o, 0, 8, s

defvar n11 = 1
defvar n12 = 0

defvar n1 = n11 + n12

defvar n21 = 0

defvar n22 = 0

defvar n2 = n21 + n22

defvar p = 0.9

defvar f1 = exp(r1*(1-(n12/K1)))
defvar f2 = 0.8

defvar s = 0.5

defvar r1 = 3.1

defvar K1 = 100
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Simulations of Sec. 5 turn following the next commands

COMMANDS FOR THE STRUCTURED DDSSM (Figs. 8 and 9)

An Introduction to Models of ...

COMMAND ACTION RESULT
run 100 runs 100 time steps
init initiates time
Fl pass to graph mode
F2 runs 100 time steps FIGURE 8a
change p 1 changes p value to unity
F2 runs 100 time steps FIGURE 8b
F1 pass to text mode
graph nl11 nl12 declares variables to plot
xscale 0 225 dimensions x co-ordinate
yscale 0 225 dimensions y co-ordinate
run 50 runs 50 time steps FIGURE 9a
init initiates time
run 100 runs 100 time steps FIGURE 9%
init initiates time
run 1000 runs 1000 time steps FIGURE 9¢
change p 0.9 changes p value
run 1500 runs 1500 time steps FIGURE 9d
change n11 0 changes n11 value to zero
change n12 7 changes 712 value to 7
change n21 13 changes n21 value to 13
change n22 1 changes n22 value to unity
F2 runs 1500 time steps FIGURE 9¢
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